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Abstraet--A quasi-static theory is derived for the relaxation of the velocity field resulting from a temperature 
change in an infinite vertical fluid layer when the temperature gradient is perpendicular to the gravity 
vector. Taking the viscosity temperature dependence into account, experimental results fit remarkably well 
the reference data for the thermal diffusivity of the studied systems. The laser-Doppler velocimetry (LDV) 
technique, applied to transient velocity measurements, is thus recommended to determine the thermal 

diffusivity in fluids. 

INTRODUCTION 

In a previous paper [1], the present authors have al- 
ready pointed out one of  their objectives in thermal 
convection in a vertical slot : a quantitative analysis of 
the conductive regime in the presence of  a horizontal 
temperature gradient. Therefore they considered an 
infinite vertical slot (at least in the theoretical part of 
their work), approximated in the experimental part 
by a slot of  aspect ratio, height to width, equal to 28. 
In such conditions, it is hoped that the horizontal heat 
transfer, due to the horizontal velocity component, 
will remain negligible, or in other words, that the 
Nusselt number will remain equal to unity (this is the 
so-called "conduction regime"). In such a situation 
the theoretical analysis appears to be a student exer- 
cise, since one has to integrate linear differential equa- 
tions in order to determine the velocity field. It has 
been known for a long time that in a slot of finite 
aspect ratio there i:s a transition to a boundary layer 
type convection regime [2-4] at high temperature 
gradients (or at high Grashof numbers), followed by a 
transition to a multi!cellular and next a time dependent 
regime. 

In [1], it was deraonstrated that, when the density 
is a linear function of the temperature, the conduction 
regime prevails when the Grashof number remains 
smaller than 2000 in a slot of aspect ratio 28. Since 
the velocity amplitudes have to remain small for the 
validity of  the conduction regime, this should be the 
case for water near its density maximum occurring at 
4°C, and for highly viscous fluids like glycerine. The 
experimental result,,; reported in [1], concerning the 
vertical velocity profiles obtained by laser-Doppler 
velocimetry, fit remarkably well the theoretical predic- 
tions, even when no:a-Boussinesq effects are included. 

In the present paper, still devoted to the conduction 

regime, we study the transient behaviour due to a 
sudden change in boundary conditions. The initial 
state is an equilibrium state at uniform initial tem- 
perature T~. At  time t = 0 the boundary conditions 
are changed and the new temperature is Tf. The time 
evolution of the temperature field was studied a long 
time ago by Fourier, and the transient behaviour is 
solely governed by the thermal diffusivity x of  the 
system: the temperature field relaxes more or less 
rapidly to the constant Tf value depending on x. But 
at any small time, there is a temperature gradient, 
implying in fluids a density gradient and therefore 
thermal convection. The way the velocity field relaxes 
to the equilibrium rest state can be easily derived, at 
least in the quasi static approximation. 

Despite the academic nature of the problem, the 
relaxation of  the velocity field to the rest state is linked 
to the relaxation of the temperature field to its con- 
stant Tr value, i.e. to the thermal diffusivity. 

Therefore we show in this paper that the thermal 
diffusivity of liquids can be obtained by recording 
the velocity, at a given point, e.g. by laser-Doppler 
velocimetry, provided that correct equations are used 
for the time behaviour of  the velocity field. The main 
interest is the duration of an experiment (typically 1 
min) together with its non invasive nature. 

Thus, in contradistinction with usual techniques, 
we measure the velocity field, instead of trying to 
completely eliminate the effects of natural convection, 
like in the hot wire technique applied by J. J. De Groot  
et aL [5] to gases and the method developed by Van 
der Held et al. [6] applied to liquids. There is of  course 
no problem with convection in the case of  solids (see 
e.g. the flash method described by Parker et al. [7]). 

BASIC EQUATIONS 

The thermal diffusivity t¢ defines the time constant 
in the energy equation for time dependent processes : 
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A, Fourier coefficient 
B, Fourier coefficient 
A, B, C numerical coefficients 
g gravity 
h length scale 
n integer 
p pressure 
Pr Prandtl number, vflc 
t time 
T temperature 
Tf final temperature 
Ti initial temperature 
T, particular solution of the heat 

equation 
V~ characteristic velocity 
V~, Vy, V~ velocity components 

NOMENCLATURE 

X 

Z 

horizontal coordinate 
vertical coordinate. 

Greek symbols 
thermal expansion coefficient 

3 viscosity coefficient 
0 reduced temperature 
rc thermal diffusivity 
2, wave number 
/~ dynamic viscosity 
#f dynamic viscosity at temperature Tf 
v kinematic viscosity 
p density 
p~ density at temperature Tr 

thermal relaxation time 
z0, z~, z2 successive approximations of z. 

~T/dt = xV 2 T. (1) 

Let us consider a one-dimensional problem x E [ -  h ; 
+h]. 
A particular solution of  equation (1) is : 

T, = [A, sin (2nx) + Bn cos (2,x)] e-~ot (2) 

with tr, = x2~. The general solution, T = E T~, has to 
satisfy the initial, final and boundary conditions : 

T = T~ (initial temperature) for t < 0 

T -= Tr(final temperature) for t ~> 0 at x = + h 

T = Tf(final temperature) everywhere for t ~ oo. 

One gets 

0 = 1 - 4 / n  ~ ( -  l ) ' / (2n+  1) cos [(2n+ 1)nx/2h] e -~t 
n = 0  

(3a) 

where 

0 = ( T -  Ti) /(Tf-  T~) (3b) 

tr = x(2n+ 1)2n2/4h 2. (3c) 

Let us now write the equations governing thermal 
convection in an infinite vertical slot of width 2h, the 
infinite vertical walls being located at x = + h  and 
x = - h .  The horizontal axis is thus the x axis, and z 
will be the vertical axis. Since the slot is supposed 
infinite on the z direction one has Vx = 0, and from 
the mass balance equation, one gets t3V~/tgz = 0 and 
therefore Vz is x and time dependent only. Thus in 
the so-called conductive regime the relevant equations 
read : 

t~p/dx = 0 (4) 

pr(3 V~/dt = #~2 Vz/Ox 2 _ Op/Oz--gp(T(t)) (5) 

with p the pressure, /z the dynamic viscosity, Vi the 

velocity components, y the acceleration of the gravity, 
and p the density given by the equation of state 

p = pf[1 - a ( T -  Tr)] (6) 

with a the thermal expansion coefficient, Tf the ref- 
erence final temperature, and pf the reference density 
at temperature Tf. 

Because the temperature is time dependent, the den- 
sity will also be time dependent. In consequence, the 
velocity field generated by the temperature gradient 
will also be time dependent. Let us now suppose that 
the slow process is the relaxation of the temperature 
field, thus that the velocity field "follows" immediately 
the temperature field, or in other words that x is small 
(compared to the kinematic viscosity v). In this 
"quasi-static" approximation, the left hand side of 
equation (5) can be neglected, and then its space inte- 
gration becomes straightforward. 

The assumption of a quasi-static process simply 
implies the condition 

er  >> 1 (7) 

where Pr is the Prandtl number Pr = v/x, and which 
is probably true for most organic liquids and water. 
The assumption fails of course for liquid metals of 
high thermal diffusivity, for which the relaxation of 
the thermal field is the fast process. 

Putting thus the left-hand side (LHS) of equation 
(5) equal to zero, eliminating the pressure by cross- 
differentiation between equations (4) and (5), the gov- 
erning differential equation for Vz simply reads (sup- 
posing a constant viscosity) 

a 3 Vz t3T 
/1 6~x 3 = -0tgpf~x X (8) 

submitted to the usual no-slip boundary conditions 

V ~ ( - h , t )  = V z ( + h , O  = 0  (9) 
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together with the zero flux condit ion across any hori- 
zontal surface. 

J f f  V~(x, dx = O. t) (10) 

Integrating three times equation (8) with respect to 
x, using equations (3) to calculate the temperature 
gradient 8T/Sx, and applying the conditions (9) and 
(10) to determine the three integration constants, one 
finds for the time dependent vertical velocity profile, 
using the dimensionless co-ordinate X = x/h 

V:(x, t) ~ e -':2"+1)~('/~) 

Vo .L'= 0 ( 2 n +  1) 3 

3 

where z is the thermal relaxation time 

4h ~ 
= - -  (12) 

/t2/¢ 

and V¢ a characteristic velocity 

16 g=l T f -  Tilh 2 
- (13)  

In Fig. 1, the velocity profile is tabulated for "large" 
times (t = 0.5 T ; 'r ; 2~ and 5 O, retaining in the sum- 
mat ion as many terms as needed to achieve an 
unnecessary six digits precision ("unnecessary", as far 
as a comparison with experiments is concerned). The 
"small" time behaviour (t < 0.1 z) needs of course 
more terms, and will not  be displayed since it will not  
be used further. As a matter of fact, at time t = 0, 
V, = 0 everywhere. When t > 5 ~, the velocity field 

becomes non  measurable. The time relaxation of the 
velocity field to the rest state is thus related to the 
thermal diffusivity. In order to determine from this 
relaxation the value of  x, there is no need to record 
the whole velocity field. It  is sufficient to dispose of 
time measurements of  the velocity at a given point, 
e.g. at X = 0, the centre of  the slot. 

e--(2n+ l)2(t#) 
V,(O,t)/Vo = ~ [ ( - 1 ) " - 3 / ( 2 n + l ) n ] .  

(2n+ 1) 3 ~t=O 

(14) 

In Fig. 2, the five first contributions to (14) 
(n = 0, 1 . . .  4) are shown, together with their sum. It 
is clear that for t/z >1 0.6, only the first contr ibution 
n = 0 is significant. When t = t* = 0.6 z, the dimen- 
sionless velocity amplitude is equal to 80% of the 
maximum value reached at t/z ~ 0.3. Consequently, 
for t >/t*, the sum (14) may be limited to the first 
term 

V~(O, t >~ t*)/Vc = e - t n ( 1 - 3 / n )  (15) 

and a logarithmic plot of  V~ (0, t f> t*) yields the 
time constant  z and therefore the thermal diffusivity, 
knowing the slot width 2h. Let us however recall that 
equation (15) was established for a quasi static process 
(Pr >> 1), for a Boussinesq fluid, in the hypothesis of 
a pure conduction regime, which in turns implies a 
small Grashof  number,  or a small temperature step 
T , -  T~. 

STRAIGHT APPLICATION, POOR RESULTS 

It should be interesting to determine the thermal 
diffusivity according to a process as simple as that 
given by equation (15). The experimental cell is the 
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Fig. 4. Transient velocity amplitude at the centre of the slot, 

for water (Ti: 40°C; Tf = 20°C). Run 1 of Table 1. 

Fig. 3. Experimental cell. 

same as already used before [1], and sketched in Fig. 
3. The cell width is 4.15 mm, so that the Grashof  
number remains small. The height is 28 × 4.15 mm, 
and therefore we hope that the assumption of  an infi- 
nite aspect ratio is satisfactory (as demonstrated in 
[1]). The third dimension is 3.6 × 4.15 mm, and since 
the measurements are taken in the centre o f  the slot, 
we hope that lateral heat losses are negligible. 

Experiments were performed first with water as 
working fluid and with the following constraint:  
Ti = 40°C, Tf = 20°C. In Fig. 4 the transient velocity 
amplitude in the centre of  the slot recorded by LDV 
is plotted with real time scale in seconds. 

Let us remark that the optical probe in LDV (a well 
known technique, not  described here) has a typical 
diameter of  90 #m, and since it is located at X = 0 (or 
x = 2.075 mm, the centre of  the slot) where the vel- 
ocity is maximum (see Fig. 1), i.e. aVz/Ox = 0, the 
velocity gradient inside the optical probe is minimized. 
Of  course this velocity gradient inside the probe is 
time dependent and is the greatest when the velocity 
reaches his maximum value at time t = 20 s in Fig. 4. 
The error on V~ can than be estimated : +__ 100/um s -~ 
or 5% 

At  t < 0, the temperature of  the two copper lateral 
walls was fixed at 40°C. At  the initial time t = 0, the 
temperature of  these two walls is changed to 20°C. A 
few seconds are needed to push away the ther- 
mostating fluid at 40°C (therefore time t = 0 is not  
well defined experimentally) ; then the velocity ampli- 
tude grows rapidly and raises up to its maximum 
reached after 20 s. Finally, an "exponent ia l"  (?) 

decrease takes place and the rest state is practically 
recovered after 100 s. F r o m  Fig. 4, the natural log- 
arithm of  Vz is plotted vs time, for t f> t* ~ 27 s such 
that V~ < 0.8 Vm~. The relationship looks fairly linear 
(see Fig. 5, where t* is taken as zero time). Owing to 
the number of  experimental points the error of  5% 
on each point  should not affect too much the slope. 
According to equation (15), the characteristictime 
z = 19.62 s is deduced, and from (12), using 
2h = 0.415 cm, we find x = 8.9 x 10 -4 cm 2 s -1. This is 
a disastrous result, since it is known for water that the 
value 14.42 x 10 -4 cm 2 s -1 should be obtained. The 
experimental value is 35% too low, in comparison 
with the data reported in the literature. However  the 
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Fig. 5. Logarithmic plot of the velocity amplitude used for 
the determination of the relaxation time • (water ; T~ = 40°C ; 

Tr = 20°C). 



Table 1. Maximura velocity amplitude and determination of 
x, for water (Ti = 40°C ; Tf = 20°C) 

Run V~=~ Lure s -  l] /17 )< 10 4 [cm 2 s - i ]  

> 

,.4 

1 2258 8.90 
2 2283 9.35 
3 2324 9.03 
4 2338 8.73 
5 2258 9.07 
6 2244 9.41 
7 2258 9.52 
8 2244 9.35 
9 2270 9.28 

mean : 9.18 
true : 14.42 

• • K = 

3.80 

3.60 

3.40 

3.20 

3.00 

2.80 

2.60 
0 

Laminar thermal convection in a vertical slot 2475 

5 10 15 20 25 

experiment is reproducible and Table I give the results 
o f  supplementary runs. Both maximum velocity and 
thermal diffusivity determination are reproducible, 
with a standard deviation of  2.8% for nine runs and 
a mean value of  x for water given by x = 9.18 x 10  - 4  

cm 2 s - l ,  instead of  14.42 x 10 - 4  c m  2 s - l .  A possible 
explanation for this discrepancy could be in the fact 
that the Prandtl  number for water is ~ 7, a value that 
could be too small to support  the assumption Pr >> 1. 
Therefore the experiments were repeated with iso- 
propanol  as working fluid for which Pr ~ 41, and 
once again were reproducible (five runs) with the value 
of  K given in Table 2, corresponding to a mean value 
of  3.81 x 10 -4 cm:: s -r ,  i.e. once again a too small value 
( ~ 5 0 % )  compared with the data in the literature 
(x = 7.48 x 10 -4 cm 2 s-I) .  Let us mention that the 
experiment on isopropanol was done for A T - -  15°C 
(T~ = 35°C; Tf = 20°C). Thus the discrepancy is not  
due this time to the Prandtl  number value. 

NOT SO BAD, AT ZERO CONSTRAINT 

The interpretation of  the observed too low values 
o f  x, could be fi>und in the too high temperature 
differences applied (AT = 15°C). Therefore the exper- 
iments were repeated for isopropanol for constraints 
A T d o w n  to I°C. Lower constraints are forbidden due 
to the detection level of  the LDV method. For  each 
temperature differ ~nce AT, several runs are performed 
(typically five runs for large AT, up to 15 runs for 
AT  = I°C since this is the most  difficult case owing 

Time (s) 
Fig. 6. Logarithmic plot of the velocity amplitude (iso- 

propanol ; Ti = 21 °C ; Tf = 20°C). 

the small values of  Vz to be recorded). Figure 6 shows 
the "wors t "  case, an example among the 15 runs for 
A T =  I°C. Table 3 gives finally the mean value of  r 
for different constraints AT  and they are plotted in 
Fig. 7. With decreasing AT, r converges to a value 
rather close to the correct one. By appropriate least 
squares fittings (3rd order polynomial) and extra- 
polation to A T  = 0, the computed data  is 6.96 x 10 -4 
cm 2 s -  l instead of  7.48 x 10 -4 cm 2 s - t  f rom literature. 
The whole set o f  experiments was repeated for ethanol 
with the following result, extrapolated at A T  = 0: 
x = 8.49 x 10-4cm 2 s - l  instead o f x  = 8.87 x 10-4cm 2 
s - l .  Thus the extrapolation to A T =  0 gives reason- 
able results. Nevertheless, the data obtained are lower 
(respectively 7 and 4%) than the values from litera- 
ture. Remembering the dispersion of  the process 
O(2%),  some final improvement  should be found. 

IMPROVED METHOD 

We believe that the remaining discrepancy lies in 
non-Boussinesq effect, not  taken into account in equa- 
tion (15). Let  us take the viscosity temperature depen- 
dent. The effect is o f  order of  30% for isopropyl alco- 
hol between 20 and 30°C. Of  course, the consequence 

Table 2. Determination of ~c for iso- 
propanol (Ti = 35°C; Tf = 20°C) 

Run K × 10 a [era 2 S -1] 

l 3.94 
2 3.79 
3 3.80 
4 3.82 
5 3.69 

mean : 3.81 
true : 7.48 

Table 3. Variation of the deduced value of r for different 
thermal constraints (case of isopropanol) 

AT [°C] x x 10 a [cm 2 s-'] 

15 3.81 
10 4.44 
3.5 5.66 
2 6.14 
1.5 6.33 
1 6.52 

extrapolation to 0 6.96 
true : 7.48 
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of viscosity variation has to be weak at AT O(I°C),  
but  unfortunately the ~c value is extrapolated and the 
final value is also determined by data recorded at 
high thermal constraints where viscosity effects can 
act significantly. Let us describe the temperature 
decrease of the dynamic viscosity by the law : 

/~ =/~r/[1 + # ' ( T -  T0] (16) 

where #f is the reference value at temperature Tr, and 
/~' is a constant  depending of  fluid. Therefore equation 
(8) is modified as follows : 

O2/Ox2~(T) OV=/Ox] = --agprOT/Ox. (17) 

Dealing with the one-term (n = 0) approximation, 
from equation (3a), the temperature law is : 

T -  T f  = - -  4 ATcos (nx/2h) e - t / * .  (18) 
7~ 

By direct integration of  equation (17), using (I 8), and 
after determination of the integration constants by 
the conditions (9) and (I0), the velocity amplitude 
estimated in the centre position of  the cell, (x = 0), 
becomes : 

V,(0,  t > t*) = e_t# 

Vo 1 + ~ C e  -t/* 

(19) 

where V¢ has the same value as before 

8 = - # ' A T  = - g ' ( T f -  T,) 

A (1  32 6 4 ' ~ 3  
= -- n ~ -  + n 3 ] 2n ~ - 0.4034 

2 16~24 
B =  1+ - -  - - ~ 0 . 0 1 2 0  

~ 2 f f  ~ 3  

2--44 ( 8  - 1) ~ -0 .4606.  
C = n2 \n 2 

Expanding 1/(1 + 6Ce -'/~) in series, we get 

3 t F~(O't > t*) ~ ( l - n ) e -  / ~ - ( - 3  8C+SA) 

-(3 82C2-82AC-82B)e-3t/" 

-(-383C3+83AC2+83BC)e-'t/~+ .'. (20) 

o r  

V~(0, t > t*) ~ 0.045 e_t / ,_8  x 0.0364e -2 t# - f i  2 
vc 

x 0.0048 e-3t/*-- 83 x 0.0022 e -4t/~ + . . .  (21) 

Estimating the different terms at time t/z = 0.63 and 
for 6 = 0.5 (a reasonable value), we have 

Vz(0;0.63) 
2.40 x 10 -2 - 0 . 5 1 6  x 10 -2 

-0 .018  × 10 -2 

- 0 . 0 0 2  x 10 -2 (22) 

and we see that the first correction in 8 is not  negligible 
since it represent more than 20% of the first term. 
However the term in 83 totally negligible. Owing to 
the values of A, B and C, we will take the following 
law for the determination of z. 

Vz(0, t > t*) ,~ 0.045e_,/~ 
Vc 

- 8 x 0.0364 e -2t/~- 62 x 0.0048 e -3t/z. (23) 

Due to the form of equation (23), a direct estimation 
of z by least squares fitting of the logarithm of Vz is 
no longer possible and an iteration process is required. 
Let us rewrite equation (23) in the form : 

Vz(0, t > t*) 
0.045 e - t /~-F~ (z ) -F2(z) .  (24) 

At the iteration 0, F 1 and F2 are neglected and a first 
approximation of the relaxation time Zo is estimated 
from 

Vz(0, t > t*) t (25) 
In Vc x0.045 %" 

For  iteration 1, F~ (z0) is taken into account in equa- 
tion (24) and the next approximation of the relaxation 
time zt is estimated from 
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1/~ (z0))/0.0451 = _ - -  (26) 

For  the iteration 2, by the same way, one gets 

ln[(-~ +Fl(z,)+F2(zl))/O.045]= t 
"~2 

(27) 
From the successive iterations z0, z,, z2 we find the 
successive iterations for x. They are listed in Table 4, 
both for isopropyl alcohol and ethyl alcohol together 
with the extrapolated value at AT = 0. It is clear that 
the effect of  the viscosity temperature dependence 
acts strongly at large AT. The convergence of the 
iterative process is clearly seen for the two sets of 
experiments. The: final result is very fair. F rom Table 
4, the measured value of x for isopropyl alcohol 
(obtained at the second iteration and extrapolated to 
AT = 0) is equal to 7.54 x 10 -4 cm 2 s - t .  The value of 
the literature is 7.48 x 10 -4 cm 2 s - t ,  i.e. a difference of 
0.8%. For  ethyl alcohol, the final value of x, obtained 
in the same conditions is 8.80 x l0 -4 cm 2 s -1 instead 
of 8.87 x l0 -4 cm: s -~, i.e. also 0.8%. Finally, taking 
into account the viscosity temperature dependence, 
the x values, measured by LDV in the transient con- 
vective regime, fit the reference data from literature 
within an error which corresponds to the standard 
deviation of the method O(1%). There is of  course no 
more difficulty in using equation (23) than equation 
(15). The only thing needed is the value of 3, or of/~'. 
There is thus a m~ed to know the viscosity at least at 
T~ and Tf, from liLerature or own measurements, and 
this is rather easy. Finally, instead of finding # '  or 

from a separate fitting of the experimental values of 
the viscosity to equation (16), one could try to find 
simultaneously the two parameters z and 3 by fitting 
the experimental points (as recorded e.g. on  Fig. 4) 
directly to equation (23) (see [8]). This procedure 
failed to give precise results : do not  expect too much 
from the method proposed in the present paper, i.e. 
the simultaneous determination of the thermal diffu- 
sivity x, of  the temperature dependence of the viscosity 
/~', and why not  the thermal expansion coefficient ~t, 
hidden in VJ 

Finally from Fig. 2, the maximum velocity ampli- 
tude reached at t/z ~ 0.3 should be proportional to 
Vc, or to AT, at least as long as the conductive regime 
is assumed. This is indeed what is observed in the 
present experiments (see Fig 8). 

CONCLUSION 

By using an ad hoc equation for the transient vel- 
ocity amplitude, assuming 

(i) the quasi-static approximation (or equivalently 
Pr  >> 1), 

(ii) the conduction regime approximation (small 
Grashof  numbers) and 

(iii) non-Boussinesq effects (viscosity is tem- 
perature dependent), 

accurate values of the thermal diffusivity can be 
obtained (say within 1% error). 

Therefore, the final conclusion, which could also be 
the title of the present paper, is: why not  use the 

Table 4. Successive iterations for x, when taking into account the temperature dependence of the viscosity : 
(a) isopropanol and (b) ethanol 

(a) 

AT x (°) x 104 [cm 2 s -l] x (l) x 10 ° [cm2 s -l] x ~:) × 104 [cm 2 s- ']  

15 3.81 4.55 4.67 
10 4.44 5.13 5.23 
3.5 5.66 6.03 6.04 
2 6.14 6.50 6.52 
1.5 6.33 6.74 6.80 
1 6.52 6.93 6.97 

extrapolation to AT = 0 7.54 
true : 7.48 

(b) 

AT x(°>x 10 4 [tsT/l 2 s -1]  K(I)× 10 4 [ c m  2 s - l ]  i¢ (2) x 10 4 [crn  2 s - I ]  

10 4.67 5.03 5.06 
7 4.79 5.11 5.14 
5 4.91 5.13 5.14 
4 5.05 5.20 5.21 
3 5.26 5.45 5.46 
2 6.11 6.26 6.26 
1 7.06 7.27 7.27 

extrapolation to AT = 0 8.80 
true : 8.87 
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Fig. 8. Variation of the maximum recorded transient velocity 
with AT. Curve 1 : ethanol. Curve 2 : isopropanol. 

non- in t rus ive  LDV me thod  to determine the thermal  
diffusivity of  liquids? 
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